SESSION 2011

Concours d'admission en première année
du Cycle de Formation d'Architectes
de l'Institut National des Sciences Appliquées de Strasbourg

Épreuves écrites

MATHÉMATIQUES

Durée : 2 heures - Coefficient : 2

Note :

– Cette épreuve comprend deux exercices et un QCM.
– Il sera tenu compte du soin apporté à la rédaction.
– Les calculatrices ne sont pas autorisées.
Exercice I

a) Soit \(A \) et \(B \) deux parties d’un espace vectoriel \(E \).
On note \(\text{Vect } (A) \) l’espace vectoriel engendré par \(A \).
Montrer que : \(\text{Vect } (A \cup B) = \text{Vect } (A) + \text{Vect } (B) \).

b) Soient \(E, F \) deux espaces vectoriels et \(f \) une application linéaire de \(E \) dans \(F \). On considère \(A \) et \(B \) deux sous-espaces vectoriels de \(E \).
Montrer que : \(f(A) \subset f(B) \iff A + \text{Ker } f \subset B + \text{Ker } f \).

Exercice II

Pour \(n, p \in \mathbb{N} \), on note \(C_n^p \) le coefficient du binôme : \(C_n^p = \binom{n}{p} = \frac{n!}{p!(n-p)!} \).
Soit \(p \) un entier supérieur ou égal à 2.
Pour \(n \in \mathbb{N}^* \), on pose \(u_n = (C_{n+p}^n)^{-1} \) et \(S_n = \sum_{k=1}^{n} u_k \).

a) Montrer que pour tout \(n \) dans \(\mathbb{N} \), on a :
\[
(n + p + 2)u_{n+2} = (n + 2)u_{n+1}
\]

b) Montrer par récurrence que pour tout \(n \) dans \(\mathbb{N}^* \) :
\[
S_n = \frac{1}{p-1} (1 - (n + p + 1)u_{n+1})
\]

c) Pour \(n \) dans \(\mathbb{N}^* \), on pose \(v_n = (n + p)u_n \).
Montrer que \((v_n)_n \) est une suite convergeant vers 0.

d) En déduire \(\lim S_n \) en fonction de \(p \).
QCM

Il y a au moins une bonne réponse à chaque question.
On cochera la ou les bonnes réponses à chacune des questions de ce QCM sur la feuille-réponse (Annexe page 5). Toute bonne réponse entraîne une bonification et toute erreur est pénalisée.

Partie ANALYSE

1. $f : x \mapsto \frac{(x+1) \ln(x+1)}{\ln(x)}$

 (a) a pour asymptote la droite d'équation $x = 1$
 (b) n'a pas d'asymptote
 (c) a pour asymptote la droite d'équation $y = x + 1$

2. $\lim_{n \to +\infty} \left(1 + \frac{1}{n^2}\right)^n$ vaut :

 (a) 0 (b) e (c) 1

3. Soit $f : x \mapsto x \sin \left(\frac{1}{x}\right)$ si $x \neq 0$

 0 si $x = 0$

 f est :
 (a) continue en 0 (b) dérivable en 0 (c) non dérivable en 0

4. $\int_0^1 t^2 \sqrt{1 - t^2} \, dt$ vaut :

 (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{16}$

5. $(\ln(1 + x))^2 - (\ln(1 - x))^2$ est équivalent en 0 à :

 (a) $-\frac{x^3}{2}$ (b) $-2x^3$ (c) $\frac{2}{3}x^4$
Partie ALGÈBRE

1. On prend λ et μ dans \mathbb{R}.
 $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$ si :
 (a) $\lambda = -3$, $\mu = 2$ (b) $\lambda = 3$, $\mu = 2$ (c) $\lambda = 3$, $\mu = -2$

2. L'ensemble des polynômes de degré inférieur ou égal à 2 est :
 (a) un espace vectoriel de dimension 2
 (b) un espace vectoriel de dimension 3
 (c) un espace vectoriel de dimension finie

3. Pour $(x, y, z) \in \mathbb{R}^3$, on pose :
 \[
 f(x, y, z) = (2x + y - z, -x + y + 2z, 3x + 2y - z)
 \]
 L'application linéaire f est :
 (a) de rang 3 (b) de rang 2 (c) surjective

4. Soient $a, b, c \in \mathbb{R}$. Le déterminant
 \[
 \begin{vmatrix}
 1 & 1 & 1 \\
 a & b & c \\
 a^2 & b^2 & c^2 \\
 \end{vmatrix}
 \] vaut :
 (a) $(b - a)(c - a)(b - c)$
 (c) $(b - a)(c - a)(b + c)$
 (b) $(b - a)(c - a)(c - b)$

5. Soit $A = \begin{pmatrix}
 2 & -1 & -1 \\
 -1 & 2 & -1 \\
 -1 & -1 & 2 \\
 \end{pmatrix}$. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A.
 (a) f est surjective
 (b) Ker f et Im f sont supplémentaires
 (c) Im f est un espace de dimension 1
SESSION 2011
Concours d'admission en première année du Cycle de Formation d'Architectes
de l'Institut National des Sciences Appliquées de Strasbourg

NOM :
Prénom :
Centre d'écrit :

Epreuve écrite : MATHEMATIQUES

Feuille-réponse à rendre obligatoirement avec la copie
ANNEXE
(Réponses du QCM)

<table>
<thead>
<tr>
<th>Partie ANALYSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
</tr>
<tr>
<td>Question 2</td>
</tr>
<tr>
<td>Question 3</td>
</tr>
<tr>
<td>Question 4</td>
</tr>
<tr>
<td>Question 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partie ALGEBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
</tr>
<tr>
<td>Question 2</td>
</tr>
<tr>
<td>Question 3</td>
</tr>
<tr>
<td>Question 4</td>
</tr>
<tr>
<td>Question 5</td>
</tr>
</tbody>
</table>
SESSION 2011

Concours d'admission en première année du Cycle de formation d'Architectes
de l'Institut National des Sciences Appliquées de Strasbourg

Epreuves écrites

PHYSIQUE
Calculatrice interdite

Durée : 2 heures – Coefficient : 2

Instructions à lire avant de remplir le document réponse :

L'épreuve est un questionnaire à choix multiples (QCM). Une bonne réponse rapporte un point et une mauvaise réponse est sanctionnée par le retrait d'un point. En cas de doute, il vaut donc mieux ne rien répondre.

L'unique document à rendre est le document réponse qu'on aura rempli avec soin.
Exercice 1.

Une bobine d'inductance 1 H et de résistance 1000 Ω est montée en série avec un condensateur de 3,18 μF. On applique à l'ensemble une tension efficace de 220 V à la fréquence de 50 Hz. Calculer :

a) le module de l'impédance du circuit :

A) \(Z < 100 \, \Omega \)
B) \(100 \, \Omega < Z < 800 \, \Omega \)
C) \(800 \, \Omega < Z < 2000 \, \Omega \)
D) \(Z > 2000 \, \Omega \)

b) l'intensité efficace du courant dans le circuit :

A) \(I < 100 \, mA \)
B) \(100 \, mA < I < 1 \, A \)
C) \(1 \, A < I < 2 \, A \)
D) \(I > 2 \, A \)

c) la tension efficace aux bornes de la bobine :

A) \(U_L < 1 \, V \)
B) \(1 \, V < U_L < 10 \, V \)
C) \(10 \, V < U_L < 100 \, V \)
D) \(U_L > 100 \, V \)

d) la tension efficace aux bornes du condensateur :

A) \(10 \, mV < U_C < 100 \, mV \)
B) \(100 \, mV < U_C < 1 \, V \)
C) \(1 \, V < U_C < 10 \, V \)
D) \(U_C > 10 \, V \)

e) le déphasage entre l'intensité et la tension aux bornes de la bobine :

A) \(-90^\circ < \varphi < -45^\circ \)
B) \(-45^\circ < \varphi < 0^\circ \)
C) \(0^\circ < \varphi < 45^\circ \)
D) \(45^\circ < \varphi < 90^\circ \)

f) le déphasage entre l'intensité et la tension aux bornes du condensateur :

A) \(-90^\circ < \varphi < -45^\circ \)
B) \(-45^\circ < \varphi < 0^\circ \)
C) \(0^\circ < \varphi < 45^\circ \)
D) \(45^\circ < \varphi < 90^\circ \)
Exercice 2.

Dans le montage suivant les valeurs de composants sont : \(R = 100 \text{ k}\Omega \) et \(C = 22 \text{ \mu F} \)

Le condensateur est initialement chargé (\(U_C = 10 \text{ V} \)). A l'instant \(t = 0 \), on ferme l'interrupteur \(K \).

a) Le courant \(i \) à l'instant \(t = 20 \text{ secondes} \) vaut :

A) \(i < 10 \text{ \mu A} \)

B) \(100 \text{ \mu A} > i > 10 \text{ \mu A} \)

C) \(1 \text{ mA} > i > 100 \text{ \mu A} \)

D) \(i > 1 \text{ mA} \)

b) L'énergie \(W \) dissipée dans la résistance pendant les 10 premières secondes vaut :

A) \(W < 10 \text{ \mu J} \)

B) \(100 \text{ \mu J} > W > 10 \text{ \mu J} \)

C) \(1 \text{ mJ} > W > 100 \text{ \mu J} \)

D) \(W > 1 \text{ mJ} \)

c) Le condensateur utilisé est celui photographié ci-dessous. Il est de type :
A) céramique
B) électrochimique
C) polyester
D) tantale

Exercice 3.
Dans le montage suivant $E = 10V$.

On ferme l'interrupteur K à l'instant $t = 0$. On relie le graphe du courant i (i évolue de 0 à 1A).
a) Déterminer graphiquement la constante de temps τ du circuit.
 A) τ < 1 ms
 B) 5 ms > τ > 1 ms
 C) 10 ms > τ > 5 ms
 D) τ > 10 ms

b) Quelle énergie W a été dissipée dans la résistance entre l'instant t = 0 et l'instant t = 2τ ?
 A) W < 1 mJ
 B) 10 mJ > W > 1 mJ
 C) 100 mJ > W > 10 mJ
 D) W > 100 mJ

Exercice 4.

Un système de deux plaques parallèles planes identiques de longueur 2 cm et séparées par
1 cm est porté à la différence de potentiel de 100 V. Un électron est injecté entre les plaques
dans une direction perpendiculaire au champ électrique régissant entre les plaques avec une
vitesse initiale de 10^7 m.s⁻¹.

a) Calculer le champ électrique supposé uniforme entre les plaques
 A) E < 10^5 V/m
 B) 10^5 V/m < E < 10^6 V/m
 C) 10^6 V/m < E < 10^7 V/m
 D) E > 10^7 V/m
b) Calculer la déviation de l'électron à la sortie des plaques

A) $d < 0.1\,\text{mm}$
B) $0.1\,\text{mm} < d < 1\,\text{mm}$
C) $1\,\text{mm} < d < 10\,\text{mm}$
D) $d > 10\,\text{mm}$

c) Calculer la vitesse transversale de l'électron à la sortie des plaques

A) $v < 10^4\,\text{m/s}$
B) $10^4\,\text{m/s} < v < 10^5\,\text{m/s}$
C) $10^5\,\text{m/s} < v < 10^6\,\text{m/s}$
D) $v > 10^6\,\text{m/s}$

d) On place un écran à 50 cm de l'extrémité des plaques. Quelle est la position du point d'impact de l'électron sur l'écran ?

A) $D < 10\,\text{cm}$
B) $10\,\text{cm} < D < 50\,\text{cm}$
C) $50\,\text{cm} < D < 100\,\text{cm}$
D) $D > 100\,\text{cm}$

Exercice 5.

Les équations en coordonnées cylindriques d'une courbe hélicoïdale d'axe (Oz) vertical ascendant s'écrivent :

$$\{r = a \, z = -h \, \theta + H\}$$

où a, h et H sont des constantes positives. θ est l'angle polaire, défini dans le sens trigonométrique.

Un colis de masse $M=1\,\text{kg}$ glisse sans frottement dans un gouttière hélicoïdale, après avoir été abandonné sans vitesse initiale, à l'instant $t = 0$, au point d'altitude $H = 2\pi h$. On assimile cet objet à un point matériel astreint à suivre la courbe décrite par les équations précédentes.

a) L'hélice en question est-elle

A) à pas à droite
B) à pas à gauche
C) ni à pas à droite ni à pas à gauche

b) On introduit une constante K positive. Pendant la chute l'équation du mouvement du colis est donnée par :

$$\frac{d\theta}{dt} = K\sqrt{\pi - \theta}$$

A) $\frac{d\theta}{dt} = K\sqrt{\pi - \theta}$
B) $\frac{d\theta}{dt} = K\sqrt{2\pi - \theta}$
C) $\frac{d\theta}{dt} = -K\sqrt{2\pi - \theta}$
\[\frac{d\theta}{dt} = -K \sqrt{\pi - \theta} \]

c) La constante \(K \) vaut :

\[
K = \sqrt{\frac{2gh}{4\pi^2 a^2 + 4h^2}}
\]

A) \[K = \sqrt{\frac{2gh}{4\pi^2 a^2 + h^2}} \]

B) \[K = \sqrt{\frac{\pi}{4\pi^2 a^2 + h^2}} \]

C) \[K = \sqrt{\frac{2gh}{a^2 + h^2}} \]

D) \[K = \sqrt{\frac{2gh}{a^2 + h^2}} \]

d) On donne \(a = 3 \text{m} \) et \(H = 5 \text{m} \). La durée \(T \) totale du mouvement amenant le colis de l'altitude initiale \(z = H \) à l'altitude \(z = 0 \) est :

A) \(T<3 \text{s} \)

B) \(3< T<3.5 \text{s} \)

C) \(3.5< T<4 \text{s} \)

D) \(4< T \)

e) A l'instant \(t = T \), la vitesse \(V \) du colis est :

A) \(V<3 \text{m/s} \)

B) \(3 \text{m/s}< V<3.5 \text{m/s} \)

C) \(3.5 \text{m/s}< V<4 \text{m/s} \)

D) \(4 \text{m/s}< V \)
CONCOURS ARCHITECTURE – Session 2011 – INSA de STRASBOURG

NOM :
Prénom :

Centre d’écrit :

Epreuve : PHYSIQUE

Epreuve : PHYSIQUE

Document réponse à rendre.

Pour chaque question, cochez la case correspondant à la bonne réponse.

Exercice 1.a	A	B	C	D	Colonne réservée à la correction
Exercice 1.b					
Exercice 1.c					
Exercice 1.d					
Exercice 1.e					
Exercice 1.f					
Exercice 2.a					
Exercice 2.b					
Exercice 2.c					
Exercice 3.a					
Exercice 3.b					
Exercice 4.a					
Exercice 4.b					
Exercice 4.c					
Exercice 4.d					
Exercice 5.a					
Exercice 5.b					
Exercice 5.c					
Exercice 5.d					
Exercice 5.e					

Ligne réservée à la correction
Session 2011

Concours d'admission en première année du cycle de formation d'Architectes
de l'Institut national des Sciences Appliquées de Strasbourg

Epreuves écrites

EXPRESSION : RESUME DE TEXTE

Durée : 2 heures – Coefficient : 2

1- Résumer en 180 à 200 mots le texte ci-après.
2- Indiquer très synthétiquement, en une ou deux phrases, quel est le thème central traité dans ce texte.
3- Exposer en une dizaine de lignes maximum vos opinions propres autour du thème central que vous venez de repérer.

Extrait de L'Utopie, Thomas MORE, Livre second « Des villes d'utopie et particulièrement de la ville d'Amaurote », (1516)

Qui connaît cette ville les connaît toutes, car toutes sont exactement semblables, autant que la nature du lieu le permet. Je pourrais donc vous décrire indifféremment la première venue ; mais je choisirai -de préférence la ville d'Amaurote, parce qu'elle est le siège du gouvernement et du sénat, ce qui lui donne la prééminence sur toutes les autres. En outre, c'est la ville que je connais le mieux, puisque je l'ai habité cinq années entières.

Amaurote se déroule en pente douce sur le versant d'une colline. Sa forme est presque un carré. Sa largeur commence un peu au-dessous du sommet de la colline, se prolonge deux mille pas environ sur les bords du fleuve Anydre et augmente à mesure que l'on côtoie ce fleuve.

La source de l'Anydre est peu abondante ; elle est située à quatre-vingts miles au-dessus d'Amaurote. Ce faible courant se grossit, dans sa marche, de la rencontre de plusieurs rivières, parmi lesquelles on en distingue deux de moyenne grandeur. Arrivé devant Amaurote, l'Anydre a cinq cents pas de large. A partir de là, il va toujours en s'élargissant et se jette à la mer, après
avoir parcouru une longueur de soixante miles.

Dans tout l’espace compris entre la ville et la mer, et quelques miles au-dessus de la ville, le flux et le reflux, qui durent six heures par jour, modifient singulièrement le cours du fleuve. À la marée montante, l’océan remplit de ses flots le lit de l’Anydre sur une longueur de trente miles, et le refoule vers sa source. Alors, le flot salé communique son amertume au fleuve ; mais celui-ci se purifie peu à peu, apporte à la ville une eau douce et potable, et la ramène sans altération jusque près de son embouchure, quand la marée descend. Les deux rives de l’Anydre sont mises en rapport au moyen d’un pont de pierre, construit en arcades merveilleusement voûtées. Ce pont se trouve à l’extrémité de la ville la plus éloignée de la mer, afin que les navires puissent aborder à tous les points de la rade.

Une autre rivière, petite, il est vrai, mais belle et tranquille, coule aussi dans l’enceinte d’Amaurote. Cette rivière jaillit à peu de distance de la ville, sur la montagne où celle-ci est placée, et, après l’avoir traversée par le milieu, elle vient marier ses eaux à celles de l’Anydre. Les Amaurotains en ont entouré la source de fortifications qui la joignent aux faubourgs. Ainsi, en cas de siège, l’ennemi ne pourrait ni empoisonner la rivière, ni en arrêter ou détourner le cours. Du point le plus élevé, se ramifient en tous sens des tuyaux de briques, qui conduisent l’eau dans les bas quartiers de la ville. Là où ce moyen est impraticable, de vastes citernes recueillent les eaux pluviales, pour les divers usages des habitants.

Une ceinture de murailles hautes et larges enferme la ville, et, à des distances très rapprochées, s’élèvent des tours et des forts. Les remparts, sur trois côtés, sont entourés de fossés toujours à sec, mais larges et profonds, embarrassés de haies et de buissons. Le quatrième côté a pour fossé le fleuve lui-même.

Les rues et les places sont convenablement disposées, soit pour le transport, soit pour abriter contre le vent. Les édifices sont bâtis confortablement ; ils brillent d’élegance et de propreté, et forment deux rangs continus, suivant toute la longueur des rues, dont la largeur est de vingt pieds.

Derrière et entre les maisons se trouvent de vastes jardins. Chaque maison a une porte sur la rue et une porte sur le jardin. Ces deux portes s’ouvrent aisément d’un léger coup de main, et laissent entrer le premier venu.

Les Utopiens appliquent en ceci le principe de la possession commune. Pour anéantir jusqu’à l’idée de la propriété individuelle et absolue, ils changent de maison tous les dix ans, et tirent au sort celle qui doit leur tomber en
partage.

Les habitants des villes soignent leurs jardins avec passion ; ils y cultivent la vigne, les fruits, les fleurs et toutes sortes de plantes. Ils mettent à cette culture tant de science et de goût, que je n'ai jamais vu ailleurs plus de fertilité et d'abondance réunies à un coup d'œil plus gracieux. Le plaisir n'est pas le seul mobile qui les excite au jardinage ; il y a émulation entre les différents quartiers de la ville, qui luttent à l'envi à qui aura le jardin le mieux cultivé. Vraiment, l'on ne peut rien concevoir de plus agréable ni de plus utile aux citoyens que cette occupation. Le fondateur de l'empire l'avait bien compris, car il plaquait tous ses efforts à tourner les esprits vers cette direction.

Les Utopiens attribuent à Utopus le plan général de leurs cités. Ce grand législateur n'eut pas le temps d'achever les constructions et les embellissements qu'il avait projetés ; il fallait pour cela plusieurs générations. Aussi légua-t-il à la postérité le soin de continuer et de perfectionner son œuvre.

On lit dans les annales utopiques, conservées religieusement depuis la conquête de l'île, et qui embrassent l'histoire de dix-sept cent soixante années, on y lit qu'au commencement, les maisons, fort basses, n'étaient que des cabanes, des chaumières en bois, avec des murailles de boue et des toits de paille terminés en pointe. Les maisons aujourd'hui sont d élégants édifices à trois étages, avec des murs extérieurs en pierre ou en brique, et des murs intérieurs en plâtras. Les toits sont plats, recouverts d'une matière broyée et incombustible, qui ne coûte rien et préserve mieux que le plomb des injures du temps. Des fenêtres vitrées (on fait dans l'île un grand usage du verre) abritent contre le vent. Quelquefois on remplace le verre par un tissu d'une ténuité extrême, enduit d'ambre ou d'huile transparente, ce qui offre aussi l'avantage de laisser passer la lumière et d'arrêter le vent.
SESSION 2011
Concours d'admission en première année du Cycle de Formation
d'Architectes
de l'Institut National des Sciences Appliquées de Strasbourg

Epreuves écrites

EXPRESSION
2.2 „Illustration libre du même texte”
Durée : 2 heures – Coefficient : 2

Cette épreuve prolonge et complète l'épreuve précédente („Résumé de texte”) en
s'appuyant sur le même extrait de „L'Utopie“ de Thomas MORE, Livre second „Des
villes d'utopie et particulièrement de la ville d'Amaurote”, (1516).

Il est, cette fois, demandé aux candidats de l'interpréter librement, sur le format de
papier mis à leur disposition (une seule face), en utilisant tous les moyens
d'expression graphique appropriés – crayon, crayons de couleur, pastel, peinture,
etc... à l'exclusion des techniques à séchage lent.

Si la liberté technique est réelle, il est cependant attendu des candidats qu'ils
remarquent que le texte propose une vision poétique, qui n'est pas seulement une
description. L'attention est donc attirée sur la recherche de la restitution en deux
dimensions des qualités spatiales spécifiques du lieu : profondeur, épaisseur,
ombres et lumières, etc...

Nota :

Par cette épreuve, il s'agit d'essayer d'évaluer les aptitudes du candidat
indépendamment d'une éventuelle ou réelle compétence graphique.

Les qualités attendues sont :
- une pertinence du choix de la représentation par référence au texte,
- une sensibilité dans la compréhension et la représentation de l'espace,
- une cohérence dans l'organisation de l'image produite.